Photothermal desorption of single-walled carbon nanotubes and coconut shell-activated carbons using a continuous light source for application in air sampling.
نویسندگان
چکیده
Many techniques exist to measure airborne volatile organic compounds (VOCs), each with differing advantages; sorbent sampling is compact, versatile, has good sample stability, and is the preferred technique for collecting VOCs for hygienists. Development of a desorption technique that allows multiple analyses per sample (similar to chemical desorption) with enhanced sensitivity (similar to thermal desorption) would be helpful to field hygienists. In this study, activated carbon (AC) and single-walled carbon nanotubes (SWNT) were preloaded with toluene vapor and partially desorbed with light using a common 12-V DC, 50-W incandescent/halogen lamp. A series of experimental chamber configurations were explored starting with a 500-ml chamber under static conditions, then with low ventilation and high ventilation, finally a 75-ml high ventilation chamber was evaluated. When preloaded with toluene and irradiated at the highest lamp setting for 4min, AC desorbed 13.9, 18.5, 23.8, and 45.9% of the loaded VOC mass, in each chamber configuration, respectively; SWNT desorbed 25.2, 24.3, 37.4, and 70.5% of the loaded VOC mass, respectively. SWNT desorption was significantly greater than AC in all test conditions (P = 0.02-<0.0001) demonstrating a substantial difference in sorbent performance. When loaded with 0.435mg toluene and desorbed at the highest lamp setting for 4min in the final chamber design, the mean desorption for AC was 45.8% (39.7, 52.0) and SWNT was 72.6% (68.8, 76.4) (mean represented in terms of 95% confidence interval). All desorption measurements were obtained using a field grade photoionization detector; this demonstrates the potential of using this technique to perform infield prescreening of VOC samples for immediate exposure feedback and in the analytical lab to introduce sample to a gas chromatograph for detailed analysis of the sample.
منابع مشابه
بررسی مقایسه ای کارایی نانو لوله های کربنی چند جداره و تک جداره در جذب و نمونه برداری از بخارات جیوه
Background and aims: Sampling of toxic mercury vapors (Hg0) is necessary for determination of occupational exposure levels of workers exposed to this contaminant. Given the tendency of carbon nanotubes for mercury adsorption, carbon nanotubes can be expected to be suitable sampling media for mercury. The aim of this study was to compare the performance of multi-walled and single-walled carbon n...
متن کاملComparison of Adsorption Properties of Activated Carbons with Different Crops Residues as Precursors for Gold Cyanide Recovery: An Iranian Gold Industry Guide
Adsorption of gold cyanide on three types of Activated Carbons (ACs) has been investigated in batch and column adsorption conditions. Applied ACs have been derived from different crops precursors i.e., coconut shell (CAC), peach stone (PAC), and walnut shell (WAC). As peach stone and walnut shells are abundant agricultural residues in Iran, the activated carbons produced from these precurso...
متن کاملAdsorption efficiency of functionalized multi-walled carbon nanotube in sampling trichloroethylene in air
Introduction: Trichloroethylene (TCE) is an industrial solvent which is often used as a degreaser for metal parts. Due to adverse health effects and carcinogenic properties of this solvent, knowing its concentration in the workplace atmosphere is really crucial. Nowadays, carbon nanotubes with high efficiency are being used for sampling of this chemical. Method:</stron...
متن کاملMeasurement of Benzene in Air by Iranian Single-Wall Carbon Nanotubes
Background: Nanotechnology is a new approach that has been lionized in recent years. One of its applications is its consumption as an absorbent. In this study, the single-wall carbon nanotubes (SWCNTs) were used as an absorbent for sampling benzene in the air. Materials and Methods: For this study, SWCNTs manufactured by Iran and SKC’s activated charcoal were used for sampling benzene vapors....
متن کاملNonlocal Flügge shell model for the axial buckling of single-walled Carbon nanotubes: An analytical approach
In this paper, the stability characteristics of single-walled carbon nanotubes (SWCNTs) under the action of axial load are investigated. To this end, a nonlocal Flügge shell model is developed to accommodate the small length scale effects. The analytical Rayleigh-Ritz method with beam functions is applied to the variational statement derived from the Flügge-type buckling equations. Molecular dy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Annals of occupational hygiene
دوره 58 7 شماره
صفحات -
تاریخ انتشار 2014